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Abstract

A method of coalescing a particle distribution that occu-
pies a ring in the phase space of one transverse degree-of-
freedom has been proposed by Derbenev. [1] The purpose
of this note is to outline a potential experimental realization
of the technique using the electron beam of a photoinjector.

1 INTRODUCTION

The process of adiabatic capture into RF buckets has a very
interesting analog in the transverse plane - another inven-
tion of Derbenev’s [1]. Suppose one starts with a ring beam
in transverse configuration space, such as may be produced
by a ring laser spot on a photocathode. Then put the bunch
through a round-to-flat transformer[2] so that one has a ring
in the phase space of one of the transverse degrees of free-
dom. So now in that degree-of-freedom, there is a distri-
bution with some width ∆a in amplitude and uniformly
populated in angle φ.

Now suppose the bunch enters a focusing channel in
which there is an octopole term so that the phase advance
is amplitude dependent and becomes an integer multiple of
2π at an amplitude a0. Steering dipoles are installed to pro-
duce deflections in synchronism with the phase advance at
the amplitude a0, and the dipole strength increases gradu-
ally along the channel, mimicking the adiabatic turn-on of
the RF in the longitudinal case. In synchrotron language,
there is a driven integer resonance at amplitude a0.

The point of this note is to see if this process can be
demonstrated in one of today’s photoinjectors at reasonable
cost, as another of the phase-space manipulations that may
play a role in future injection systems. Incorporation of the
slow increase of the dipole terms suggests that a ring rather
than a linear channel is the most reasonable structure, but
the discussion will be carried on for a while without making
that choice.

2 PARAMETER DEFINITION

Let L be the distance along the central trajectory of the
structure over which the phase of a (linear) oscillation
would advance by almost 2π, increasing with amplitude
to 2π at amplitude a0 due to the octopole driven tune-
shift. Let ∆B(x, s) represent the dipole and octopole
fields, where x is the transverse displacement from and s
distance along the central trajectory. Let ψ represent the
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phase modulo 2π at some periodic points of observation
separated by L in the structure.

Then, proceeding in the spirit of a perturbation of the lin-
ear motion, the change in amplitude resulting from a single
passage of the distance L is[3]

∆a =
β0

(Bρ)

∫ L

0

(
β(s)
β0

)1/2

∆B(x, s) sin[ψ + φ(s)]ds

(1)
where β0 is the amplitude function at the point of obser-
vation, (Bρ) is the magnetic rigidity, and the unperturbed
motion is described by

x(s) = a

(
β(s)
β0

)1/2

cos[ψ + φ(s)]. (2)

Using subscripts to represent the number of poles in a
field contribution, write ∆B = ∆B2 + ∆B8. Then for the
integer resonance driving field take

∆B2 = −
(
β0

β(s)

)3/2

B0 cosφ(s) (3)

where B0 is a positive constant. The reason for the explicit
choice of sign will be apparent later. Setting ds = β(s)dφ
in Eq. 1, one finds

∆a2 = − πβ2
0

(Bρ)
B0 sinψ = −πβ0

L
β0Θ2 sinψ. (4)

In the rightmost expression of Eq. 4, the angle Θ2 is the
deflection that would be produced ifB0 extended a distance
L; Θ2 ≡ B0L/(Bρ). This expression looks reasonable;
the factor πβ0/L is typically of unit order of magnitude
while Θ2β0 is the characteristic change in amplitude due
to the angular deflection Θ2.

The octopole field must be chosen so that it does not
contribute to ∆a. This can be accomplished by the choice

∆B8 =
(
B′′′(s)

6

)
x3 =

(
β0

β

)3 (
B′′′

6

)
0

x3. (5)

Then

∆a8 =
β2

0

(Bρ)

(
B′′′

6

)
0

a3

∫
sin[ψ+φ] cos3[ψ+φ]dφ = 0

(6)
as desired.

The treatment for phase advance follows in an analogous
fashion, starting from

∆ψ =
β0

(Bρ)

∫ L

0

(
β(s)
β0

)1/2 ∆B(x, s)
a

sin[ψ + φ(s)]ds.

(7)



For the dipole contribution,

∆ψ2 = − πβ2
0

(Bρ)
B0

a
cosψ = −πβ0

L

β0Θ2

a
cosψ. (8)

In the case of the octopole, the integral no longer vanishes
but yields 3π/4 with the result

∆ψ8 =
3
4
πβ2

0

(Bρ)

(
B′′′

6

)
0

a2. (9)

Now modify Eq. 9 in two ways. Replace a2 by a2 − a2
0 in

order to reference the rotation in phase space to the radius
a0. And in a similar fashion to the use of Θ2, define the
corresponding quantity for the octopole field as the total
angular deflection at radius a0. The result is

∆ψ8 =
3
4
πβ0

L

β0Θ8

a3
0

(a2 − a2
0), (10)

where Θ8 ≡ (B′′′/6)0 a3
0L/(Bρ).

To reflect the ramp of the dipole field, place a factor b
with 0 ≤ b ≤ 1 in front of Θ2. Set a = ra0. Finally,
interpreting ∆a and ∆ψ as derivatives da/dn = a0dr/dn
and dψ/dn gives the set of differential equations

dr

dn
= −kΘ2b sinψ (11)

dψ

dn
= k

[
3
4
Θ8(r2 − 1)− 1

r
Θ2b cosψ

]
(12)

k ≡ πβ0

L

β0

a0
. (13)

Eqs. 11, 12 are of the form of Hamilton’s equations,

dr

dn
= −1

r

∂H

∂ψ
,
dψ

dn
=

1
r

∂H

∂r
(14)

for the Hamiltonian

H = k

[
3Θ8

16
(r2 − 1)2 −Θ2br cosψ

]
. (15)

Fixed points are at ψ = 0 and ψ = π, stable and un-
stable respectively. Placement of the stable fixed point at
the “below transition” location was the motivation for the
sign choice in Eq. 3. From the expression for the separatrix
passing through r = 1, ψ = π, the width of the resonance
island at ψ = 0 is

w = 2
(

8
3

Θ2

Θ8

)1/2

. (16)

Expansion of Eqs. 11 and 12 in the neighborhood of the
stable fixed point gives, after combination into a second
order equation for ψ:

d2ψ

dn2
+(2πνs)2ψ = 0, νs ≡

[
3

32π2
k2Θ2Θ8b

]1/2

. (17)

The quantity νs, the analog of the synchrotron oscillation
tune, presumably must be sufficiently small compared with
unity to satisfy the adiabaticity requirement.

As input parameters, let us chooseL, a0,w, and ∆φ, this
last being the difference in phase advance between ampli-
tude a0 and small oscillations. With use of Eq. 12,

Θ8 =
4La0

3πβ2
0

∆φ (18)

and from Eq. 16

Θ2 =
3
32

Θ8w
2. (19)

The relationship between β0 andL depends on the focusing
structure. For a weak focusing ring of circumference L
and field index nf , β0 = L/[2π

√
(1 − nf )], while for a

sequence of FODO cells, β0 ≈ (2 +
√

2)L/8.

3 CHANNEL EXAMPLE
As an example, suppose the channel is a ring bending mag-
net of the sort that might be used in a weak focusing syn-
chrotron. The small amplitude tune, ν, is somewhat less
than one, and an octopole term constant in azimuth pro-
duces the integer tune at the appropriate amplitude. The
dipole kick is provided at a single location on the ring. Of
course, this simple example makes no provision for injec-
tion or extraction.

The equation of motion for transverse oscillations of a
particle about the beam axis within the bend magnet is

d2u

dn2
= −(2πν)2u− LΘ8

a0
u3. (20)

A computer code was written using R.[4] To illustrate
the process, we envisage the synchrotron described above
and model it as m sections of length L/m with octupole
“kicks” in the middle of each section. At one of the sec-
tion interfaces in the ring a ramped dipole kick is provided.
Defining u ≡ x/a0, v ≡ β0x

′/a0, and ~u ≡ (u, v)T , we
cast Eq. 20 into matrix form,

~ui+1 = R[R~ui + ~Θ(R~ui)], (21)

transporting ~u through the ith section. The matrixR is a ro-
tation matrix through angle 2πν/m/2, and the function ~Θ
operating on the vector ( ~X) = (x1, x2)T is determined by
the required octupole strength. In terms of Θ8 the kick per
section will be ∆v = β0∆x′/a0 = (β0/a0)(Θ8/m)u3 =
8
3 (∆φ/m)u3, or

Θ( ~X) =
(

0
− 8∆φ

3m x3
1

)
. (22)

In the simulation, m is chosen to be 32.
Similarly, the dipole kick given once per revolution

(once per m sections) is to generate ∆v = (β0/a0)Θ2,
or

∆~u =
(

0
1
4∆φ w2

)
. (23)



In the code the dipole field is increased overNb revolutions
according to

b(n) = 1− e−5(n/Nb)
2
. (24)

To provide a smooth adiabatic ramp, Nb is chosen to be
several thousand turns.

Using the parameters L = 2 m, a0 = 4 × 10−3 m,
∆φ = π/8 and w = 0.5 the code produces the phase
space plots shown in Figure 1. The initial distribution is
a uniformly populated ring of 100 particles at r = 1, and
the next three plots are for revolution numbers 1000, 2000,
and 4000. Figure 2 shows the initial and final (Nb = 104)
phase space plots, the dipole ramp function b(n), and the
variation of the rms values of the variables u and v during
the process. As can be seen, the distribution settles down
at about turn number 4-5000, where b has reached about
60-70% of its final value.

4 DISCUSSION
As expected based on what we have been told by colleagues
who have modeled the process[5], the initial ring distribu-
tion is reconfigured into a bunch-like shape. The behavior
is indeed quite similar to the adiabatic capture process in
the longitudinal degree-of-freedom.

Several measures are needed to turn this process into a
candidate for construction. To accommodate injection, ex-
traction, and diagnostics, one approach would be to turn the
system into a racetrack by introduction of two straight sec-
tions equipped with quadrupoles for β-matching. In order
to avoid introduction of octopole resonance driving terms,
the phase advance of each such straight section should be
2π or a multiple thereof. Because of the use of the intrin-
sically sensitive integer tune, provision for correctors will
likely be necessary.

No mention has been made of bunch length effects; in
particular, the need for an isochronous structure. Suppose
the momentum spread is at the ∆p/p ≈ 10−3 level. Then
for the weak focusing ring, a bunch of initially negligible
length would spread into one wrapped several times around
the circumference.

The insertion of negative bends reminiscent of the stel-
larator approach may be used to address this problem. But
inclusion of momentum spread into the model may uncover
the need for correction of chromatic effects.

The large number of iterations used in the example of
the preceding section is worrisome. The distribution set-
tles down at some 5000 turns, but that is over 30 µs, which
is a long time if a rather rapid cycling application is en-
visaged. A degree of miniaturization coupled with tighter
resonance dipole spacing could be explored. But there is
a qualitative distinction between this process and the other
two phase space manipulations that we have had occasion
to study, namely, the flat beam transformation cited ear-
lier, and the longitudinal-transverse interchange method[6].
Both of those involve a single passage through a rather
short structure.

Finally, despite the use of the term “coalesce”, the tech-
nique conserves phase space, therefore any advantage in its
use must be found in amelioration of space charge effects
in the bunch generation steps.
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Figure 1: Phase space plots during adiabatic increase of dipole field. After 4000 revolutions, the deflection angle is 55%
of Θ2.
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Figure 2: Top: Initial and final phase space plots; final value of dipole deflection angle is Θ2. Bottom: Ramp profile of
dipole field (left), and development of rms of particle distribution (right) in the variables u (red) and v (black).


